

### Pacemaker-Electrocautery Interactions

- 1. Asystole
- 2. Accelerated/erratic tracking
- 3. Noise reversion mode activation
- 4. Pacemaker reset
- 5. Rate response mode activation
- 6. Lead or circuitry damage

1



### Cautery Sensed by Pacemaker

• If the amplitude and slew rate of the detected cautery signal are sufficient to meet the sensitivity threshold, the pacer will respond

<figure>

4

6

2



# Key Concept #2

Barold, Cardiac Pacemakers and Resynch., p. 60

• The atrial sensing threshold is usually lower than the ventricular threshold



# Note that the<br/>atrial<br/>sensitivity<br/>threshold is<br/>ensitivity<br/>thresholdBrady ParametersModeDDDRLower Rate Limit<br/>Hax Tracking Rate<br/>Hax Sensor Rate<br/>i40Lower Rate Limit<br/>Hax Sensor Rate<br/>i120 -Ventroular<br/>sensitivity<br/>threshold0.40ATRIAL<br/>Pulse Width<br/>Amplitude<br/>Sensitivity<br/>threshold0.50Ventroular<br/>sensitivity<br/>threshold0.50

### 7

### Key Concept #3

 Pacemakers programmed with <u>unipolar</u> sensing are more susceptible to cautery than those programmed with <u>bipolar</u> sensing

8



### 9





• Pacers are much more susceptible to monopolar cautery than to bipolar cautery

### 10

### Key Concept #5

• The likelihood that a pacer will detect cautery is very dependent on <u>where</u> the cautery is applied to the patient AND <u>where</u> the electrocautery return pad is placed





16

### Electrocautery detection by ICDs



17

### **Concepts Encapsulated**

• Electrocautery is likely to be sensed by non-asynchronous pacers if the current path between the monopolar cautery instrument and the return pad travels near the pacing leads/pulse generator, especially if the pacer is sensing with a unipolar configuration; and cautery is more likely sensed on the atrial than the ventricular channel.

18

### 1. Asystole

- Monopolar cautery used in close proximity to the pacer's lead(s) is likely to inhibit pacemaker output
  - If the pacer is truly pacer dependent, asystole can occur

### Pacemaker-Electrocautery Interactions

- 1. Asystole
- 2. Accelerated/erratic tracking
- 3. Noise reversion mode activation
- 4. Pacemaker reset
- 5. Rate response mode activation
- 6. Lead or circuitry damage

### **Clinical Example**

- Pt for thoracic surgery with significant CAD.
- Pt was pacer dependent and 100% AVpaced.
- Anesthesiologist did not want to use magnet (HR of 100 and CAD) and chose not to reprogram the pacer.
- Asked surgeon to use short bursts of cautery.

EMI-induced Asystole

22

21

### 2. Accelerated/Erratic Tracking

- Cautery detected by the atrial lead triggers ventricular pacing in DDD pacers
  - Atrial lead senses the cautery, ventricular does not
  - Paced HR can theoretically increase up to the max tracking rate
  - More often, the ventricular pacing is erratic

### Max Tracking Rate

| Basic Operation                         | 4 DDD        | Refractories & Blanking<br>PVARP | 275 ms      |  |  |
|-----------------------------------------|--------------|----------------------------------|-------------|--|--|
| V. Triggering                           | Off          | Post-Vent, Atrial Blanking       | 100 ms      |  |  |
| Magnet Response                         | Battery Test | Rate Responsive PVARP/V Ref      | High        |  |  |
| V. Noise Reversion Mode                 | +VOO         | Shortest PVARP/V Ref             | 175 ms      |  |  |
| Sensor                                  | ▶ Off        | A/V Pace Refractory              | 190/250 ms  |  |  |
|                                         | - OII        | A/V Sense Refractory             | 93/250 ms   |  |  |
| Rates                                   |              | Ventricular Blanking             | Auto @      |  |  |
| Base Rate                               | 60 bpm       | Ventricular Safety Standby       | On          |  |  |
| Rest Rate                               | Off          | PVC Response                     | Off         |  |  |
| Max Track Rate                          | 130 bpm      | PMT Response                     | Atrial Pace |  |  |
| Hysteresis Rate                         | Off          | PMT Detection Rate               | 110 bpm     |  |  |
| 2.1 Block Rate                          | 216 bpm      |                                  |             |  |  |
|                                         |              | _ AT/AF Detection & Response     |             |  |  |
| Delays                                  |              | Auto Mode Switch                 | IN DDI      |  |  |
| Paced AV Delay                          | 200 ms       | A. Tachycardia Detection Rate    | 180 bpm     |  |  |
| Sensed AV Delay                         | 150 ms       | AMS Base Rate                    | 80 bpm      |  |  |
| Rate Responsive AV Delay                | Medium       | AF Suppression™                  | Off         |  |  |
| Shortest AV Delay                       | 100 ms       |                                  |             |  |  |
| Ventricular Intrinsic Preference (VIP®) | On           |                                  |             |  |  |
| VIP® Extension                          | 200 ms       |                                  |             |  |  |
| Search Interval                         | 1 min        |                                  |             |  |  |
| Search Cycles                           | 1            |                                  |             |  |  |
| Neg. AV Hysteresis/Search               | Off          |                                  |             |  |  |

24





26

### Clinical Example of Ventricular Tracking of Electrocautery

- 50 yo W scheduled for a Belt Lipectomy
- SSS

28

- DDD pacemaker
- Not pacer dependent

# <section-header><section-header><section-header><equation-block><equation-block><equation-block><text>

29









| Mode                                                                         |     | Value<br>DDD>                           | Presen<br>Value<br>DOI     |                         |
|------------------------------------------------------------------------------|-----|-----------------------------------------|----------------------------|-------------------------|
| Lower Rate Limit<br>Max Tracking Rate<br>Max Sensor Rate<br>AV Delay (paced) | DYN | 40<br>120><br>120><br>>                 |                            | ppm<br>ppm<br>ppm<br>ms |
| ATRIAL<br>Pulse Width<br>Amplitude<br>Sensitivity<br>Refractory (PVARP)      |     | 0.40<br>2.0<br>0.50<br>280              | 0.40<br>2.0<br>0.50<br>280 | V<br>mV                 |
| VENTRICULAR<br>Pulse Width<br>Amplitude<br>Sensitivity<br>Refractory         |     | 0.50<br>2.0<br>1.5<br>250               | 0.50<br>2.0<br>1.5<br>250  | wV                      |
| AV Delay                                                                     |     |                                         |                            |                         |
| Dynamic AV Delay<br>Maximum Delay<br>Minimum Delay                           |     | Initial<br>Value<br>ON><br>308><br>208> |                            | ns<br>ns                |
| Sensed AV Offset                                                             |     | -30>                                    |                            | ns                      |
| AV Search Hysteresis<br>Search Interval<br>AV Increase                       |     | OFF                                     | OFF                        | cycles                  |

### 2 Key Concepts

- DDI and VVI are non-tracking modes that are useful in the setting of electrocautery use close to the pacemaker in a patient who is not typically pacing
- If you choose to keep the pacer in DDD, you should monitor for erratic tracking in addition to asystole

### 3. Noise Reversion Mode Activation

 Temporary asynchronous pacing mode activated during EMI that prevents asystole in pacemaker dependent patients

36

34



38





39





44

### Noise Reversion Mode Example

- In this case the pacer <u>rate change</u> from 70 to 50 was the sign that the pacer went into the NRM
- The pacer is not malfunctioning—just another PSEUDOMALFUNCTION

45

### 4. Pacemaker Reset

- Typically caused by a surge of energy coursing through the pulse generator
- Converts pacer to a fixed VVI mode at a specific rate
  - Medtronic 65
  - Boston Sci 65
  - St Jude 67.5
  - Biotronik 70
- NOT temporary---Must reprogram

46

### **MRI causes Pacer Reset**

- 83 yo Cantonese speaking patient to OSH
- · Had acute pancreatitis
- An MRI was performed
- When patient transferred to the MGH, the patient was hypotensive and the pacemaker was "malfunctioning"

47

### MRI converts Pacer to VVI

- Dec 2012 interrogation (1 year ealier):
  DDD mode
  - 97% atrial pacing with intact ventricular conduction
- At MGH, she was in VVI mode due to pacer reset
  - Lost the effective atrial kick

### 5. Rate Response Mode Activation

- If the rate response mode sensor misinterprets the electrocautery as a sign that the patient is increasing his or her activity level, the paced rate will increase
  - More likely with the minute ventilation sensor
  - This is more theoretical than practical in my experience

### 6. Lead or Circuitry Damage

- RARE
- Occasionally after cardiac surgery I will see a "Lead Impedance Warning" that resolves
- I have not seen permanent lead or pulse generator damage related to cautery alone
- If it is going to occur—it will likely be related to direct radiation exposure or with cautery used very close to the device (e.g., PVI or VT ablation)

50

## Electrocautery in patients with a Pacemaker may cause:

- Temporary asystole
- Elevated/erratic pacing rates due to ventricular tracking of cautery seen by the atrial lead
- Reversion to temporary asynchronous pacing (NRM)
- Permanent (pacer reset) VVI pacing
- Elevated pacing rates due to a inappropriate rate response mode activation
- Damage the lead-tissue interface or damage the pacemaker circuitry

52



51

### 5 Ways to Reduce Cautery Issues:

- Avoid unipolar pace sensitivity settings when possible
- If bipolar cautery an option, use it
- Place cautery return pads strategically
- Minimize cautery output levels
- If inappropriate tracking occurs, convert to a non-tracking pacing mode if possible