

Introduction

- Need to understand all clinically relevant pacing modes
- Start with 5-Letter Code
- Discuss each mode
- Summarize

379

Pacemaker Nomenclature

Position I	Position II	Position III	Position IV	Position V		
Chambers paced	Chambers sensed	Response to sensing	Programmability	Multisite pacing		
O = None A = Atrium	O = None A = Atrium	O = None	O = None R = Rate Modulation	O = None		
A = Atrium V = Ventricle	A = Atrium V = Ventricle			A = Atrium V = Ventricle		
D = Dual (A+V)	D = Dual (A+V)	D = Dual (T+I)		D = Dual (A+V		
		physiology; BPEG, British Pacing	and Electrophysiology Group.			
1. Pac		physiology; BPEG, British Pacing	and Electrophysiology Group.			
1. Pac	ed	physiology; BPEG, British Pacing	and Electrophysiology Group.			
	ed	physiology; BPEG, British Pacing	and Electrophysiology Group.			
1. Pac 2. Sen	ed sed	physiology; BPEG, British Pacing	and Electrophysiology Group.			
1. Pac	ed sed	physiology; BPEG, British Pacing	and Electrophysiology Group.			

5. Multisite pacing

Ellenbogen Clinical Cardiac Pacing 2nd Ed p. 329

385

386

Trigger

- Triggered Mode—a type of pacemaker response in which the pacemaker will fire when a beat is sensed.
 - Can pace in the same chamber (VVT)
 - Can pace in the other chamber (VAT)

387

How to discuss any given Mode?

- What the pacer does based on the 5-letter code
- Programmed intervals
- Derived intervals
- Sensing risks
- · Risk mitigation

Analysis of Modes Format	
Description	
Prog. Intervals	
Der. Intervals	

Sensing Risks

Risk Mitigation

392

ACOODescriptionAtrial Pacing
No sensingProg. IntervalsLower Rate intervalDer. IntervalsNoneSensing RisksNoneRisk MitigationNA

393

395

AOO

- Asynchronous atrial pacing at LRL
 - No sensing
 - Each atrial paced beat LRI msecs apart
 - Automatic interval starts with each paced beat

AOO

Advantages

- Good for pacer dependent patients exposed to noise (EMI)
- Avoids oversensing and asystole
- Disadvantages
 - Pacing occurs regardless of intrinsic events
 - Potential risk of atrial arrhythmia induction

394

VOODescriptionVentricular Pacing
No sensingProg. IntervalsLower Rate intervalDer. IntervalsNoneSensing RisksNoneRisk MitigationNA

VOO

- Asynchronous ventricular pacing at LRL
 - No sensing
 - Each ventricular paced beat LRI msecs apart
 - Automatic interval starts with each paced beat

397

VOO

- Advantages
 - Good for pacer dependent patients exposed to noise (EMI)
 - Avoids oversensing and asystole
- Disadvantages
 - Lose A-V synchrony
 - Pacing occurs regardless of intrinsic events
 - Potential risk of vent. arrhythmia induction

400

DOODescriptionA and V pacing
No sensingProg. IntervalsLower rate interval
AV intervalDer. IntervalsAtrial escape intervalSensing RisksnoneRisk MitigationNA

401

403

DOO

- Asynchronous, A-V sequential pacing

 No sensing _______
 - An atrial pacing output is followed by a pAV interval and then a ventricular paced output
 - AEI starts after VP and cycle continues

DOO pacing: Interpret thisLAVH</tr

405

DOO

- Advantages
 - Good for pacer dependent patients exposed to noise (EMI)
 - Avoids oversensing and asystole
- Disadvantages
 - Pacing occurs regardless of intrinsic events
 - Potential risk of atrial or vent. arrhythmia induction

AAI

• Paces atrium at set rate unless underlying atrial depolarization inhibits output

• No awareness of ventricular activity

• No tracking ability

AKA Atrial Demand Pacing

406

AAIDescriptionA-pacing
A-sensing
Inhibition of pacing upon sensing.Prog. IntervalsLower rate intervalDer. IntervalsNoneSensing RisksAtrial pace, evoked potential, atrial repol.
Far-field QRSRisk MitigationAtrial BP, Atrial RP

407

<text>

408

411

412

	VVI
Description	Ventricular pacing Ventricular sensing Inhibition of pacing upon sensing
Prog. Intervals	Lower rate interval
Der. Intervals	none
Sensing Risks	Vent pacing output, evoked potential, T-wave Far-field P-wave
Risk Mitigation	Vent BP, Vent RP

AAI

- Advantages
 - Ideal for patients with sinus node dysfunction but acceptable A-V conduction
 - Uses only one lead and therefore preserves battery
- Disadvantages
 - AAI lacks ventricular pacing in the event of intermittent A-V block

VVI

- Pacer set to pace the ventricle at the LRL, but a sensed event before the timing cycle elapses will <u>inhibit</u> the pacing pulse and restart the timing cycle
- AKA Ventricular Demand Pacing

417

416

418

419

	DDI
Description	A and V pacing A and V sensing Inhibition only, no tracking
Prog. Intervals	Lower rate interval AV interval
Der. Intervals	AEI
Sensing Risks	noise can inhibit atrial or ventricular pacing
Risk Mitigation	

Safer than VOO in patients with an underlying ventricular rhythm

Advantages

- Ideal for patients in Atrial Fibrillation
- Useful for short term pacing after a ICD shock

VVI

- Less battery than a dual chamber device
- Disadvantages
 - In the presence of any organized atrial rhythm, VVI would result in AV asynchrony
 - Associated with a higher rate of Atrial arryhthmias

- AV sequential pacing with dual chamber sensing and inhibition without P-synchronous pacing
 - Functions as two separate pacemakers (AAI and VVI)
 - Does not track intrinsic atrial P-waves
- Program the LRL and AVI
- The ventricular paced rate is never greater than the programmed LRL regardless of the atrial rate

425

DDI

- Advantages
 - Good mode for patients in A-Fib/Flutter
- Disadvantages
 - Possible AV dyssynchrony due to lack of atrial tracking

4. Single Chamber Tracking Modes

- VVT. AAT. VAT*
- Track a sensed event with either an immediate same chamber pacing impulse (VVT, AAT) or a delayed (after the AVI) ventricular pacing impulse (VAT)
- Programming intervals: LRL, AVI, MTR

*not truly a single chamber pacing system

429

VVT

- Ventricular triggered mode
 - Ventricular pacing, ventricular sensing, triggered response
- Delivers a ventricular pacing output every time a native R-wave is sensed or the LRL interval is reached
- Must program a LRL and a MTR

431

VVT Pacing in a CRT-D

AAT

- Atrial triggered mode
 - Atrial pacing, atrial sensing, trigger response
- If no underlying rhythm, the pacer will Apace at the LRL
- Delivers an atrial pacing output every time a native atrial event is sensed or the LRL is reached
- Program LRL, MTR

430

Another Example of VVT in a St Jude CRT device

VAT

- · Ventricular pacing, Atrial sensing, Triggered mode
- Atrial sensing triggers ventricular pacing - Ventricular pacing is performed blindlyintrinsic ventricular activation cannot be seen
- Program LRL, AVI, MTR
- · Could work for a patient with complete heart block but a normal SA node and chronotropic response

5. Dual Chamber with Inhibition and Tracking

- DDD, VDD
- Program LRL, AVI, MTR

436

435

DDD

- Most common pacing mode
- Paces both chambers
- Senses both chambers
- Inhibits and Triggers
 - Atrial sensing inhibits atrial output and triggers A-V interval→ventricular output
 - Ventricular sensing inhibits ventricular output

437

- · Ideal systems for safe and efficient pacing

DDD

- Programmer must set a lower rate limit, 2 AV intervals, and an upper rate limit
 - Atrial sensing can allow pacer to track intrinsic atrial beats (pace the ventricle after an appropriate AV interval)

438

	DDD
Description	A and V pacing A and V sensing Inhibition and tracking
Prog. Intervals	Lower rate interval AV interval URL interval**
Der. Intervals	AEI TARP
Sensing Risks	Atrial pacing stimulus, Atrial evoked potential Vent. pacing stimulus, Vent. evoked potential Far-field noise
Risk Mitigation	Atrial BP, ARP, PVAB, PVARP Vent. BP, VRP, PAVB, CDW

AP VP

445

DDD Options

ATRIAL

VENTR. PACE

time

time

time

A. 7. Sinnaeve

450

- Advantages
 - Preserves AV synchrony
 - Low incidence of arrhythmias
 - Improved hemodynamics
- Disadvantages
 - Will track atrial dysrhythmias to the MTR

DDD

– Shorter battery longevity

453

+54

VDD

- Ventricular pacing, dual chamber sensing and P-synchronous ventricular pacing and inhibition
- Typically used in devices with a single pass lead which integrates an atrial sensing electrode with a ventricular sense/pace electrode

VDD

- Useful for patients with intact sinus node but A-V conduction disease or those needing biventricular pacing
- Must program LRL, sAVI, and MTR
- Is there an effective AEI (VAI)?
- Why no pAVI?

458

VDD

LRL

VAI

SAV

AS VP

Atrial Tracking

LRL

SA

P

AS

R

VS

Spont. rhythm

V

VP

VAI

459

461

- V-pace, Atrial and Ventricular sense, trigger and inhibit
- Typically associated with a special lead
- Must program the LRL, sAVI, MTR
- Can pace at LRL or higher, depending on the intrinsic atrial rate, up to the MTR
- Good for patients with intact SA node but suboptimal A-V conduction

464

462

D VDD

VP

DVI

- · Similar to DDI, but no sensing in the atrium
- · If the intrinsic rate is less than the LRL, A-V pacing occurs at the LRL with programmed AVI
- If the intrinsic atrial rate exceeds the LRL, competitive atrial pacing will occur
 - The ventricle will still pace at the LRL without any atrial synchrony

465

467

466

VDI

p.143

- VVI pacing while sensing both chambers
- · Good for patients who go into A Fib
 - Does not track but does provide some addl information about the atrial rate
 - No concern for asynchronous atrial or ventricular pacing

468

Rate Response Modes

- · Used when patients do not have sufficient Pwave response to exercise:
 - Atrial Fibrillation
 - SA node disease
- Rate Response makes up for "chronotropic incompetence" by increasing the LRL with increased activity
- Signified by the addition of an "R" in the 4th position

Common Rate Response Modes

- Pacing Modes without Tracking Function – DDIR
 - VVIR
 - AAIR
- Pacing Modes with Tracking Function – DDDR

471

DDIR

- DDI pacing with a rate response mode
- Frequently used as the mode switch response to A Fib or Flutter
- Rate response allows the base HR (LRL) to increase with activity
- Must program the LRL, AVI, and Max Sensor Rate (no need to program MTR)

472

DDDR

- DDD pacing with a rate response mode
- Must define a Max Sensor Rate as well as the LRL, MTR, and AVI
- Useful for patients with intermittent sinus node incompetence who are physically active

Bi-Ventricular Pacing Modes

- DDDOV
- DDDRV
- Two ventricular pacing electrodes
 - Typically RV and Cor Sinus
 - Could be RV and LV epicardial
 - Could be Bi-atrial

474

DDDOV

- DDD with biventricular pacing
 - Typically the extra lead is in the coronary sinus
 - Used in patients with intraventricular conduction defects and poor LV systolic function
 - Must program LRL, AVI, MTR, and MSR

DDDRV

- DDD with Bi-ventricular pacing and a rate response mode
 - Useful for patients with chronotropic incompetence

What is this Mode? 01-DEC-2010 ast Program Date: rady Parameters SSI 70 ppm Mode LRL MTR/MSR Sense Output 2.5 mV BI 2.5 V@ 0.40 ms Off Sensor Clinical Events Tachycardia hreshold Test Results 0.6 V @ 0.40 ms 04-MAR-2014

477

479

Enter another SSI example

478

How to Analyze the Pacing Mode?

- 1. Describe what the pacing mode does - VVI: V-pace, V-sense, inhibit
 - DDD: A-V pace, A-V sense, Track and Inhibit

How to Analyze the Pacing Mode?

- 2. What will the pacer do under 4 conditions
 - a. No intrinsic rhythm
 - b. P-wave only
 - c. R-wave only
 - d. P and R waves
 - VVI
 - a. V-pace at LRL
 - b. V-pace at LRL, disregards P-waves c. Inhibits V-pacing unless intrinsic rate < LRL
 - d. Inhibits V-pacing unless intrinsic rate < LRL

480

How to Analyze the Pacing Mode?

2. What will the pacer do under 4 conditions?

- a. No intrinsic rhythm
- b. P-wave only
- c. R-wave only
- d. P and R waves

DDD:

- a. AP, VP at LRL with PAVI
- b. AS then AP inhibit, and initiate SAVI followed by VP
 c. AEI elapses so AP, PAVI started, VS so VP inhibited
 d. AS inhibits AP, SAVI started, VS inhibits VP—no pacing

Summary of Modes

- · More common modes you will see:
 - -DDD(R)
 - DDI(R)
 - DDD(R)V
 - -VVI(R)
 - -AAI(R)
 - DOO

Key Take Home Message

• Think about each letter individually when you try to determine the possible response of the pacemaker in the OR setting

– DDD

- Cautery could inhibit atrial pacing
- Cautery could initiate Ventricular tracking
- Cautery could inhibit Ventricular pacing
- Weak (far-field) cautery could inhibit atrial pacing, but not ventricular pacing and therefore track the cautery Cautery sensed by atrium triggers inappropriate Vpacing

483

Simplicity	+++	+++	++	++	+	+	-	_
AV synchrony	-	-	+	+	+	+ =	+	+*
Potential for pacemaker syndrome	+	+	-	-	-	-	-	-
Normal LV activation	-	-	+	+	b	b	b	b
Propensity to ELT	-	-		-	+	+ *	+	+ 5
fracking of SVT	-	-	-	-	+		+	-
Contraindicated in AV block	-	-	+	+	-	-	-	-
increase of pacing rate in atrial thronotropic incompetence	-	+	-	+	_d	-	+	+
Cost	-	+	-	+	++	++	+++	++++
	in the senso nts with AV allow for r ia at the low	r-driven i block. ormal an ver rate or	ate, AV terograc at the s	dissociati le conduc ensor-driv	d rate, an on with I tion. /en rate.	1emody:	+++ 2 DDIR mo namic	- 225

484

Section Summary

- Memorize the 5-Letter Code
- T or D in the 3rd position indicates the presence of tracking
 - Good for maximizing cardiac output
 Bad for Atrial dysrhythmias
 - May be bad for cautery
- DDD is the most versatile mode
- An "R" in the 4th position means the pacer has a rate-response mode
- A "V" in the 5th position indicates biventricular pacing

485

